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Chapter 7

CUSTOMER-BEHAVIOR AND
MARKET-RESPONSE MODELS

This chapter reviews the basic theory of consumer choice, aggregate
demand, and the operational, market-response models that are used in
both quantity- and price-based revenue management. Because demand
results from many individuals making choice decisions—choices to buy
one firm’s products over another, to wait or not to buy at all, to buy
more or fewer units—we begin by looking at models of individual-choice
behavior. When added up, these individual purchase decisions deter-
mine aggregate demand, so we next discuss aggregate-demand functions
and their properties. Our treatment of the theory is somewhat abbrevi-
ated, aimed more at developing an intuitive and practical understanding
of the concepts. The Notes and Sources section at the end of the chap-
ter provides references that offer more extensive treatment of consumer
behavior theory. Appendix E at the end of the book provides a basic ref-
erence on consumer theory, including utility theory, reservation prices,
and risk preferences.

7.1 The Independent-Demand Model
Before delving into more complex models of demand, we first briefly

review the independent-demand model, which is the basis of much of
the material in Chapters 2 and 3 on quantity-based RM. This model is
rather simple: it assumes that demand for each product is an indepen-
dent stochastic process, not influenced by the firm’s availability controls.
Further, as we have seen in Section 2.2, static models of quantity-based
RM also assume that the demand for products arrives in a specified or-
der over the booking period, with demand for the lower-priced products
appearing first. Thus, the independent model does not endogenize cus-
tomer behavior, neither choice behavior nor purchase-timing behavior.
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While it is easy to criticize the simplistic nature of this model, one
can make a few theoretical and practical arguments in support of it.
As discussed in Chapter 2, in standard quantity-based RM practice the
customer is faced with a menu of possible products differentiated by
prices and restrictions. As a result, if the firm offers products, cus-
tomers are approximately segmented into separated populations (one
for each product) according to their preference for the different product
restrictions and prices. If customers are sufficiently well segmented by
the restrictions (in the sense that most of the customers who are eligi-
ble to purchase one product are not eligible to buy another), then the
independent-demand assumption is not unreasonable. However, this ar-
gument is admittedly weakened by the fact that (at least in the airline
case) most restrictions are progressively relaxed as the fares get higher.
So a customer who is eligible for one fare class is normally eligible for
all classes with higher fares. We must then assume that customers are
unwilling to purchase these higher fares.

Second, the independent-demand model is reasonable if the market
is competitive and products are commodities—defined as products in
which the identity of the supplier is of little importance to customers. In
such cases, firms are price takers and can control only the quantity they
sell; customers, in turn, base their choices only on price and are willing
to buy from any firm offering the market price. (See Section 8.2.) Hence,
if a given commodity product is not available at one firm—in particular,
if its availability is closed by RM system controls—then demand for
that product effectively disappears because customers will purchase the
product from a competitor rather than switching to alternative products.

Third, the model reflects the current airline and hotel industry prac-
tice of separating pricing and capacity-control decisions, reflecting the
different scope of the two in these industries—pricing decisions are made
infrequently, while capacity-control is done in real-time; prices are set
at a market level that includes a large number of flight departures (for
airlines) and for an entire season (for a hotel) while capacity control is
exerted on individual flights and dates. The implicit assumption in tra-
ditional quantity-based RM is that when prices for the products change,
the change in the demand being observed will influence the forecasts
and this changed forecasts, together with the new price of each product,
will lead to changes in the capacity controls on each flight. This sort
of quasi-static view of the price-demand relationship lies at the heart of
current RM practice, and indeed the success of traditional RM method-
ology points to the practical utility of the overall approach.

Finally, the independent-demand model considerably simplifies the
RM forecasting and optimization tasks. Forecasting can use historical
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demand data in standard time series forecasting methods, and we can
solve stochastic optimization models based on the independent-demand
model (at least approximately) relatively efficiently.

Yet despite these arguments in support of the independent-demand
model, the fact that it ignores consumer behavior is conceptually unsat-
isfying and, more important, limits the full potential of RM methods.
To counter its simplifications, a number of ad-hoc methods, such as the
sell-up model discussed in Section 2.6, have been proposed. The discrete-
choice model of Section 2.6 is a more recent alternative that overcomes
the limitations of the independent-demand model. This latter model
has more in common with the customer-choice-behavior view of demand
that is the focus of this chapter.

7.2 Models of Individual Customer Choice
We next look at the basic approaches for modeling individual customer

purchase decisions. In Chapter 9, we discuss methods for estimating the
parameters of these models.

7.2.1 Reservation-Price Models
The simplest practical models of customer choice directly model cus-

tomers’ reservation prices for particular items. Each customer is as-
sumed to follow a simple decision rule: if his reservation price (or val-
uation) equals or exceeds the offered price the customer purchases
the product; otherwise, he will not purchase the product. Moreover, he
buys at most one unit of the product.

A customer’s reservation price is specific to each individual and typ-
ically is private information unknown to the firm. However, based on
management judgment, historical observed purchase behavior or other
observable characteristics of the individual (such as place, time, and
channel of purchase), the seller can attempt to model the distribution
of the reservation prices across a population of customers and estimate
at least the parameters of the distribution. This leads to a problem of
finding a distribution F(·) such that the probability that a customer’s
reservation price is below is given by

Often, however, the distribution of reservation prices is modeled in-
directly by assuming an aggregate-demand function, as we discuss in
Section 7.3 below. Hence, we postpone further discussion of reservation-
price modeling until that point.
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7.2.2 Random-Utility Models
Random-utility models are based on a probabilistic model of indi-

vidual customer utility. (See Appendix E for a formal discussion of
utility theory.) They are useful for several reasons. First, probabilistic
models can be used to represent heterogeneity of preference among a
population of customers. Second, they can model uncertainty in choice
outcomes due to the inability of the firm to observe all the relevant
variables affecting a given customer’s choice (other alternatives, their
prices, the customer’s wealth, and so on). Third, they can model sit-
uations where customers exhibit variety-seeking behavior and deliber-
ately alter their choices over time (movie or meal choice, for example).
Finally, probabilistic choice can model customers whose behavior is in-
herently unpredictable—that is, customers who behave in a way that is
inconsistent with well-defined preferences and at best, exhibit only some
probabilistic tendency to prefer one alternative to another. Luce [349]
developed a model of this type of random-choice behavior based purely
on a set of axioms on choice probabilities, analogous to the axioms used
to define classical deterministic utility functions. (See Appendix E.)1

For all these reasons, it is often reasonable to assume that a firm has
only probabilistic information on the utility function of any given cus-
tomer, and this can be modeled by assuming that customers’ utilities
for alternatives are themselves random variables. Specifically, let the

alternatives be denoted A customer has a utility for
alternative denoted Without loss of generality we can decom-
pose this utility into two parts, a representative component that is
deterministic and a mean-zero random component, Therefore,

and the probability that an individual selects alternative from a subset
S of alternatives is given by2

In other words, the probability that has the highest utility among all
the alternatives in the set S.

The representative component is often modeled as a function of
various observable attributes of alternative A common assumption is

1The distinction between models based on randomized preferences and those based on
random-choice behavior is important primarily to behavioral theorists. A seminal work in
this area is Block and Marschak [79]. However, for most RM problems what matters most is
the demand process produced by a given model.
2That customers choose based on maximizing utility is itself an assumption. See Appendix E
for a discussion of utility maximization as a model of customer choice.



3Specifically, the utility can also depend on observable customer characteristics, so for cus-
tomer the utility of alternative is For simplicity, we ignore customer-specific charac-
teristics here, but they can be incorporated into all the models that follow.
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the linear-in-attributes model

where is a vector of parameters and is a vector of attribute values
for alternative which could include factors such as price, measures of
quality and indicator variables for product features. Variables describing
characteristics of the customer (segment variables) can also be included
in 3

This formulation defines a general class of random-utility models,
which vary according to the assumptions on the joint distribution of the
utilities Random-utility models are no more restrictive in
terms of modeling behavior than are classical utility models; essentially,
all we need assume is that customers have well-defined preferences so
that utility maximization is an accurate model of their choice behavior.
(Theorem E.3 in Appendix E.) However, as a practical matter, certain
assumptions on the random utilities lead to much simpler models than
others. We look at a few of these special cases next.

7.2.2.1 Binary Probit
If there are only two alternatives to choose from (such as buying or

not buying a product) and the error terms are independent,
normally distributed random variables with mean zero and identical vari-
ances then the probability that alternative 1 is chosen is given by

where denotes the standard normal distribution. This model is
known as the binary-probit model. While the normal distribution is an
appealing model of disturbances in utility (it can be viewed as the sum
of a large number of random disturbances), the resulting probabilities do
not have a closed-form solution. This has led researchers to seek other,
more analytically tractable, models.

7.2.2.2 Binary Logit
The binary-logit model applies also to a situation with exactly two

choices, similar to the binary-probit case, but is simpler to analyze. The
assumption made here is that the error term has a logistic
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distribution—that is,

where µ  > 0 is a scale parameter and Here has a

mean zero and variance The logistic distribution provides a good
approximation to the normal distribution, though it has “fatter tails.”
The probability that alternative 1 is chosen is given by

7.2.2.3 Multinomial Logit
The multinomial-logit model (MNL) is a generalization of the binary-

logit model to alternatives. It is derived by assuming that the are
i.i.d. random variables with a Gumbel (or double-exponential) distribu-
tion with cumulative density function

where is Euler’s constant (= 0.5772...) and µ  is a scale parameter.
The mean and variance of are

The Gumbel distribution has some useful analytical properties, the
most important of which is that the distribution of the maximum of
independent Gumbel random variables with the same scale parameter µ
is also a Gumbel random variable. If two random variables and are
Gumbel distributed with mean 0 and scale parameter µ , then
has a logistic distribution with mean 0 and variance, leading to the
binary-logit model.

For the MNL model, the probability that an alternative is chosen
from a set that contains is given by

If has a unique maximum and then the variance of
the tends to zero and the MNL reduces to a deterministic
model—namely
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Conversely, if then the variance of the tends to
infinity and the systematic component of utility becomes negligible.
In this case,

which corresponds to a uniform random choice of the alternatives in S.
Hence, the MNL can model behavior ranging from deterministic utility
maximization to purely random choice.

The MNL has been widely used as a model of customer choice. How-
ever, it possesses a somewhat restrictive property known as the indepen-
dence from irrelevant alternatives (IIA) property—namely, for any two
sets and any two alternatives the choice
probabilities satisfy

Equation (7.7) says that the relative likelihood of choosing and is
independent of the choice set containing these alternatives. This prop-
erty is not realistic, however, if the choice set contains alternatives that
can be grouped such that alternatives within a group are more similar
than alternatives outside the group because adding a new alternative
reduces the probability of choosing similar alternatives more than dis-
similar alternatives. A famous example illustrating this point is the
“blue-bus/red-bus paradox,” (Debreu [150]):

Example 7.1 An individual has to travel and can use one of two modes of trans-
portation: a car or a bus. Suppose the individual selects them with equal probability.
Let the set S = {car, bus}. Then

Suppose now that another bus is introduced that is identical to the current bus
in all respects except color: one is blue and one is red. Let the set T denote
{car, blue bus, red bus}. Then the MNL predicts

However, as bus color is likely an irrelevant characteristic in this choice situation, it
is more realistic to assume that the choice of bus or car is still equally likely, in which
case we should have
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As a result of IIA, the MNL model must be used with caution. It
should be restricted to choice sets that contain alternatives that are, in
some sense, “equally dissimilar.” Example 9.18 provides one empirical
test for the IIA property.

Despite this deficiency, the MNL model is widely used in marketing.
(See Guadagni and Little’s [227] work on determining brand share in
the presence of marketing variables such as advertising and promotion.)
It has also seen considerable application in estimating travel demand.
(See Ben-Akiva and Lerman [48].) The popularity of MNL stems from
the fact that it is analytically tractable, relatively accurate (if applied
correctly), and can be estimated easily using standard statistical tech-
niques. (See Example 9.6.)

Variations of the MNL have been introduced to avoid the IIA problem,
the most prevalent of which is the nested MNL [49]. Our next section
looks at some generalizations of the MNL that avoid the IIA property.

7.2.3 Customer Heterogeneity and Segmentation
RM often relies on the premise that different customers are willing

to pay different amounts for a product. For example, demand functions
arise from heterogeneity in the reservation prices of customers. In many
situations, this level of modeling of heterogeneity is sufficient or is the
only practical approach.

Yet a more accurate representation of demand is achievable if cus-
tomers can be segmented into groups with similar preferences and price
responses. This entails classifying customers into K segments, where
each segment has its own choice model. If done properly, each of these
segment-level models predicts the behavior of the segment better than a
common choice model. In the extreme case, one could potentially define
a different segment for each customer. However, a model of heterogene-
ity has to find the right balance between estimability and accuracy; each
segment should not be so narrowly defined or so small as to make estima-
tion impossible, yet it should be sufficiently small that customers within
a segment have relatively homogeneous price and marketing variable re-
sponses. The aim is to maximize between-group variation but minimize
within-group variation with respect to market responses. (Many of the
techniques used to identify and segment customers are based on cluster
analysis.) We next look at a few common approaches along these lines.

7.2.3.1 Finite-Mixture Logit Models
In the basic MNL model with linear-in-attribute utilities, the coeffi-

cients in (7.3) are assumed to be the same for all customers. This may
not be an appropriate assumption if there are different segments with



Customer-Behavior and Market-Response Models 309

different preferences. Moreover, as we’ve seen, the assumption leads to
the IIA property, which may not be reasonable in certain contexts. If
we can identify each customer as belonging to a segment, then it is an
easy matter to simply fit a separate MNL model to the data from each
segment. However, a more sophisticated modeling approach is needed if
segment membership is not observable.

Assume that customers within each segment follow a MNL model
with identical parameters and that customers have a certain probability
of belonging to a segment (called a latent segment), which has to be
estimated along with the MNL parameters for each segment. This results
in the so-called finite-mixture logit models.

Assume that there are L latent segments and that the probability that
a customer belongs to segment is given by

All customers in segment are assumed to have utilities determined by
an identical vector of coefficients Then the probability of choosing
alternative in this finite-mixture logit model is given by

One then tries to estimate the coefficients of the model and
using, for example, maximum-likelihood methods. This model

often provides better estimates of choice behavior than the standard
MNL model, at the expense of a more complicated estimation procedure.

7.2.3.2 Random-Coefficients Logit Models
Another approach to modeling heterogeneity is to assume that each

customer has a distinct set of coefficients that are drawn from a
distribution—usually assumed normal for analytical convenience—over
the population of potential customers. This leads to what is called the
random-coefficients logit model. The coefficients may also be correlated,
both within themselves as well as with the error term, though we focus
here on the simpler case where the coefficients are mutually independent.

Here again the utility of alternative is given, similar to the MNL
model, as

However, is now considered a vector of random coefficients, each el-
ement of which is assumed to be independent of both the other coeffi-
cients in and the error term Furthermore, the components of
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are assumed to be normally distributed with a vector of means b and a
vector of standard deviations The components of the random vector

corresponding to characteristic denoted can be decomposed
into

where is a collection of i.i.d. standard normal random
variables.

It is convenient to express the utility as a systematic part and a mean-
zero error term as before: To this end, define the composite random-error
term

Then a customer’s random utility is given by

where is given by (7.8). Hence, the key difference between the stan-
dard MNL and the random-coefficient logit is that the error terms
are no longer independent across the alternatives (and somewhat less
important, they are no longer Gumbel distributed). The following ex-
ample illustrates the idea:

Example 7.2 Suppose that there are three alternatives with two char-
acteristics each and that the values of the characteristics are given as in
Table 7.1.

If the parameter means are estimated as then the logit model
would have a customer choosing one of the three products with an equal probability.
In contrast, the random-coefficients logit model would have customers with a high
preference for characteristic1 high) consider alternatives 1 and 2 as closer substi-
tutes than alternative 3. Customer preferences and product characteristics interact
via (7.8).

Note also that the IIA property of standard logit is partially mitigated in this
model. A customer with a high preference for characteristic will choose
alternative 2 with high probability if the choice set {2,3} is offered and will choose 1
or 2 with equal probability if the choice set {1,2, 3} is offered.

7.3 Models of Aggregate Demand
Even with transaction-level data, it is often easier to model and es-

timate aggregate demand rather than individual customer-choice deci-
sions. Figure 7.1 illustrates how the heterogenous reservation prices of
individual demand translate into a price versus quantity relationship for
aggregate demand. Depending on the model, this aggregate demand
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could be defined at the product, firm, or market level. If defined at
the product or firm level, interactions with demand for other products
(cross-elasticities) and dependence on historical demand or product at-
tributes may have to be incorporated in its specification. In this section,
we look at some commonly used aggregate-demand models.

7.3.1 Demand Functions and Their Properties
For the case of a single product, let and denote, respectively,

the (scalar) price and the corresponding demand at that price. Also
let denote the set of feasible prices (the domain) of the demand
function. For most demand functions of interest, but some
functions (such as the linear-demand function) are not well defined for
all nonnegative prices.
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7.3.1.1 Regularity
It is often convenient to make the following regularity assumptions

about the demand function:

ASSUMPTION 7.1 (REGULARITY: SCALAR CASE)
(i) The demand function is continuously differentiate on
(ii) The demand function is strictly decreasing, on
(iii) The demand function is bounded above and below:

(iv) The demand tends to zero for sufficiently high prices—namely,

(v) The revenue function is finite for all and has a finite
maximizer that is interior to the set

These are not restrictive assumptions in most cases and simply help
avoid some technical complications in both analysis and numerical op-
timization. For example, consider a linear demand model (defined for-
mally in Section 7.3.3.1)

This is trivially differentiable on is strictly decreasing if is
nonnegative and bounded for all tends to zero for and
the revenue and has a finite maximizer

7.3.1.2 Market-Share and Reservation-Price Distribution
It is sometimes convenient to express the demand function in the form

where is a cumulative distribution function and N is interpreted as
the market size. is then interpreted as the fraction of the market
that is willing to buy at price equivalently, is the distribution of
reservation prices in the customer population. The derivative of
is denoted

For example, consider again the linear-demand function (7.10). This
can be written in the form (7.11) if we define and
Since F(.) is the probability distribution of a customer’s reservation price

reservation prices are uniformly distributed in the linear-demand-
function case.
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7.3.1.3 Elasticity of Demand

The price elasticity of demand is the relative change in demand pro-
duced by a relative change in price. It is defined by

Note that elasticity is defined at a particular price
To illustrate, for the linear-demand function (7.10), so the

elasticity is

Products can be categorized based on the magnitude of their elasticities.
A product with is said to be elastic, while one with a elasticity
value is said to be inelastic. If demand for the
product is said to be perfectly elastic, while if demand is
said to be perfectly inelastic. Table 7.2 shows a sample of estimated
elasticities for common consumer products. While many factors affect
elasticity, these estimates give some sense of the relative magnitudes of
elasticities.

7.3.1.4 Inverse Demand
The inverse-demand function, denoted is the largest value of

which generates a demand equal to —that is,

Given an inverse-demand function, one can view demand rather than
price as the decision variable, since every choice of a demand implies
a unique choice of price This is useful, as it is often easier ana-
lytically and computationally to work with demand rather than price as
the decision variables in optimization problems.

The inverse may not be well-defined, however—for example, for values
of corresponding to points at which the demand function has a
jump discontinuity. Also, there may be not be a price that produces
any given value of demand (for example, if demand remains bounded
as tends to zero yet is large). Since not all values of may be
obtainable, we let denote the set of achievable demand values. This
set plays a role analogous to for the demand function.

Under the regularity Assumption 7.1, the demand function is strictly
decreasing and continuously differentiable on so the inverse-demand
function is always well defined and continuously differentiable on the
set Indeed, under Assumption 7.1, the
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demand function is continuous, decreasing, and bounded and tends to
zero for sufficiently high prices. One can also verify that the domain of
the inverse-demand function is always an interval of the form
for some upper bound

Equation (7.11) expressed in terms of the reservation-price distribu-
tion, the inverse-demand function is defined by
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where is the inverse of F(.).
To illustrate, the inverse of the linear-demand function (7.10) is

and the set of feasible demand rates is

7.3.1.5 Revenue Function
The revenue function, denoted is defined by

This is the revenue generated when using the price and is of fun-
damental importance in dynamic-pricing problems. For example, the
linear-demand function (7.10) has a revenue function

For most dynamic-pricing problems, we require that this revenue func-
tion be concave, as in the linear example above. This condition leads to
well-behaved optimization problems.

7.3.1.6 Marginal Revenue
Another important quantity in pricing analysis is the rate of change

of revenue with quantity—the marginal revenue—which is denoted
It is defined by

It is frequently useful to express this marginal revenue as a function of
price rather than quantity. At the slight risk of confusion over notation,
we replace by above and define the marginal revenue as a function
of price by4

4By the inverse-function theorem,
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Note that above is still the marginal revenue with respect to
quantity— —but expressed as function of price rather than quan-
tity; in particular, it is not the marginal revenue with respect to price.5

Expressing marginal revenue in terms of the reservation-price distri-
bution we have that

where is the hazard rate of the distribution
6 The marginal revenue function plays an important role in pricing

problems. It is also central to the design of revenue-maximizing auctions,
where it is referred to as the virtual utility, for reasons that are discussed
in Chapter 6.

To illustrate, consider the marginal revenue of the linear-demand func-
tion of (7.10) as a function of

Substituting for above we obtain the marginal revenue
as a function of price

It is frequently useful to make the following assumption about the
marginal revenue:

ASSUMPTION 7.2 (MONOTONE MARGINAL REVENUE) The marginal
revenue defined by (7.11) is strictly decreasing in the demand
Equivalently, the marginal revenue defined by (7.13) is strictly
increasing in the price

5The relationship between the marginal revenue with respect to price and quantity is as
follows: since then and Therefore,

(This also follows from the chain rule.)
6To see this, note that so

where the first equality follows from (7.13) and the next two from (7.11).
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Note that this condition guarantees that the revenue function is
a concave function of the demand which again is a useful property in
optimization models because it guarantees that first-order conditions are
sufficient for determining an optimal price. This property is satisfied,
for example, by the linear-demand function.

Slightly weaker conditions than those of Assumption 7.2 will also en-
sure that pricing-optimization problems are well behaved. In particular,
if the revenue function is strictly unimodal,7 this is often sufficient to
ensure that there is a unique optimal price. (This is true for simple un-
constrained pricing problems, for example.) Recall that denotes the
reservation-price density (derivative of and
denotes the hazard rate. Then the following sufficient conditions on the
reservation-price distribution ensure strict unimodality of the revenue
function (see Ziya et al. [591]):

PROPOSITION 7.1 Suppose that the reservation-price distribution
is twice differentiable and strictly increasing on its domain

and Suppose further that F(·) satisfies any one
of the following conditions:
(i) for all

(ii) for all

(iii) for all

Then the revenue functions is strictly
unimodal on (equivalently, the revenue function is
strictly unimodal on

Ziya et al. [591] show there are demand functions that satisfy one
condition but not the others, so the three conditions are distinct.

Another desirable property of the marginal revenue function is that it
spans the range as ranges over (equivalently, ranges over

). This is because in optimization problems, the first-order conditions
typically involve equating marginal revenue to a nonnegative value (such
as a cost or a Lagrange multiplier). If the marginal revenue spans the
range then the solutions of the first-order conditions are always
in (or ), and therefore, the explicit price (or demand) constraints
can be safely ignored. We formalize this property in the following as-
sumption:

7 A function defined on the domain is said to be a unimodal function if there exists
an such that is strictly increasing on and is strictly decreasing on
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ASSUMPTION 7.3 The range of the marginal revenue defined by (7.11)
and (7.13) spans That is, for every such
that equivalently, such that

Note that the linear-demand function does not satisfy this condition
because the marginal revenue is and so
the marginal revenue ranges over Other common demand
functions, however, do satisfy this assumption, as described below.

7.3.1.7 Revenue-Maximizing Price
Under Assumption 7.2, the revenue is maximized at the point where

the marginal revenue becomes zero. Assumption 7.1, part (v), requires
that the maximizer is an interior point of the domain in which case
the revenue-maximizing price is determined by the first-order condi-
tion

Similarly, the revenue-maximizing demand, denoted is defined by

They are related by

For example, for the linear-demand function we have
so an interior point of the set The revenue-
maximizing demand is

Note from (7.13) that since (from Assump-

tion 7.1, part (ii)), and is the price elasticity, we have

Thus, marginal revenue is increasing if demand is elastic at (that is,
if ), and marginal revenue is decreasing if demand is inelastic
at (that is, if ). At the critical value marginal
revenue is zero and revenues are maximized.

If is not monotone but one of the conditions of Proposition 7.1
is satisfied, then is a price such that is increasing for and
is decreasing for moreover,

Figure 7.2 illustrates the idea. Here, the revenue function for
the linear-demand function is plotted above, while the marginal-revenue
function is plotted below. Moving to the right corresponds to in-
creasing the demand and decreasing the price The inelastic-demand
region is to the right of and the elastic region is to the left of
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Starting at the far right with a price of zero, the demand is very
inelastic; large relative changes in price (for example, doubling the price
from to ) result in small relative changes in demand. As a result,
raising the price increases revenues. To the left, at very high price levels,
relatively small decreases in price result in large increases in demand.
Consequently, decreasing price improves revenues. The optimal price
is the boundary of these two regions.

If there is a cost for providing the product—either a direct cost or
opportunity cost—it is always optimal to price in the elastic region. To
see this, let denote the cost, so that is the firm’s profit.
Then the optimal price will occur at a point where
Assuming cost is strictly increasing in quantity, the optimal
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price will be at a point where marginal revenue is positive—in the elastic
region. Thus, it is almost never optimal to price in the inelastic region.8

7.3.2 Multiproduct-Demand Functions
In the case where there are products, let denote the price

of product and denote the vector of all prices. The
demand for product as a function of p is denoted and

denotes the vector of demands for all products.
Again, will denote the domain of the demand function. We also use
the notation to denote all prices other
than

Paralleling the single-product case, the following regularity assump-
tions for the multiproduct-demand function help ensure the resulting
optimization models are well behaved:

ASSUMPTION 7.4 (REGULARITY: CASE) For

(i) demand is strictly decreasing in for all
(ii) The demand function is continuously differentiable on
(iii)The demand function is bounded above and below:

(iv) The demand function tends to zero in its own price for sufficiently
high prices—that is, for all

(v) The revenue function is bounded for all and has a
finite maximizer that is interior to

As in the scalar case, we let p(d) denote the inverse-demand distrib-
ution; it gives the vector of prices that induces the vector of demands d.
In the multiproduct case, this inverse is more difficult to define generally,
and in most cases we simply assume it exists. (For the common demand
functions of Section 7.3.3, the inverse can be defined either explicitly or
implicitly.) Likewise, we denote by the domain of the inverse-demand
function, the set of achievable demand vectors d.

The revenue function is defined by

which again represents the total revenue generated from using the vector
of demands d—or equivalently, the vector of prices p(d). Paralleling

8The only exception is if the firm benefits from disposing of products—that is, if it has a
negative cost. For example, this could occur if there is a holding cost incurred for keeping
units rather than selling them. In such cases, it may be optimal to price in the inelastic
region.
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Assumptions 7.2 and 7.3, in the multiproduct case it is often convenient
to make the following assumption:

ASSUMPTION 7.5 The multiproduct revenue function satisfies
(i) is jointly concave on
(ii) For every there exists a such that

Again, these assumptions help simplify the resulting pricing optimiza-
tion problems and, and though more difficult to check than in the single-
product case, are satisfied by several common demand functions.

The cross-price elasticity of demand is the relative change in demand
for product produced by a relative change in the price of product It
is defined by

If the sign of the elasticity is positive, then products and are said
to be substitutes; if the sign is negative, the products are said to be
complements. Intuitively, substitutes are products that represent dis-
tinct alternatives filling the same basic need (such as Coke and Pepsi),
whereas complements are products that are consumed in combination
to meet the same basic need (such as hamburgers and buns).

7.3.3 Common Demand Functions
The demand function of a product can depend on variables other

than its price (such as product attributes or, marketing variables such
as advertising, brand name, competitor’s prices and past market share),
and modeling demand as a function of all relevant variables makes a
model more realistic and accurate. The variables can either be current
or lagged, when past-period variables affect demand. Here we focus
on demand functions that depend only on current prices. A few other
market-response functions that include nonprice variables are discussed
in Section 9.6.4.

Table 7.3 summarizes the most common demand functions and their
properties, and Figure 7.3 shows graphs of a few of these. All these
functions satisfy the regularity conditions in Assumptions 7.1 and 7.4,
the exception being the constant-elasticity-demand function, which does
not satisfy part (v) of either assumption as explained below.



322
T

H
E

 T
H

E
O

R
Y

 A
N

D
 P

R
A

C
T

IC
E

 O
F

 R
E

V
E

N
U

E
 M

A
N

A
G

E
M

E
N

T



Customer-Behavior and Market-Response Models 323

7.3.3.1 Linear Demand
We have already seen the case of a linear-demand function in the

scalar case. To summarize, it is

where and are scalar parameters. The inverse-demand
function is

The linear model is popular because of its simple functional form.
It is also easy to estimate from data using linear-regression techniques.
However, it produces negative demand values when which can
cause numerical difficulties when solving optimization problems. More-
over, as mentioned, it does not satisfy Assumption 7.3. Hence, one must
typically retain the price constraint set when using the
linear model in optimization problems.

In the multiproduct case, the linear model is

where is vector of coefficients and is a matrix
of price sensitivity coefficients with for all and the sign of

depending on whether the products are complements
or substitutes If B is nonsingular, then the inverse-demand
function exists and is given by
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One sufficient condition for to exist is that the row coefficients
satisfy9

Roughly, this says that demand for each product is more sensitive to a
change in its own price than it is to a simultaneous change in the prices
of all other products. An alternative sufficient condition for to exist
is that the column coefficients satisfy

Equation (7.17) says that changes in the price of product impacts
the demand for product more than it does the total demand for all
other products combined. In the case of substitutes
this is equivalent to saying there is an aggregate market expansion or
contraction effect when prices change (for example, the total market
demand strictly decreases when the price of product increases, and
demand for product is not simply reallocated one for one to substitute
products).

7.3.3.2 Log-Linear (Exponential) Demand
The log-linear—or exponential—demand function in the scalar case

is defined by

where and are scalar parameters. This function is defined for
all nonnegative prices, so The inverse-demand function
is

The log-linear-demand function is popular in econometric studies and
has several desirable theoretical and practical properties. First, unlike
the linear model, demand is always nonnegative so one can treat price
(or quantity) as unconstrained in optimization problems. Second, by
taking the log of demand, we recover a linear form, so it is also well
suited to estimation using linear regression. However, demand values
of zero are not defined when taking logarithms, which is problematic in
settings where sales are infrequent.

The multidimensional log-linear form is

9 As noted by Maglaras and Meissner [354] from conditions in Horn and Johnson [258].
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where is a scalar coefficient and is a vector of
price-sensitivity coefficients. Letting and as
in the linear model, and taking the logarithm, we have

so again the log-linear model can be estimated easily from data using
linear regression provided the data is not too sparse.

The inverse-demand function can be obtained as in the linear case if
B is nonsingular, in which case

and one can again use the sufficient conditions (7.16) or (7.17) to check
that exists.

7.3.3.3 Constant-Elasticity Demand
The constant-elasticity-demand function in the single-product case is

of the form

where and are constants. The function is defined for
all nonnegative so Since the
elasticity is

a constant for all values (hence the name). The inverse-demand func-
tion is

Note that because elasticity is constant, from (7.15) the marginal rev-
enue will always be positive or will always be negative for all values of

(unless by chance in which case it is zero for all values
of ). Thus, this function usually violates Assumption 7.1, part (iv),
because either the marginal revenue is always positive so or
the marginal revenue is always negative, so both extreme points
of the set (unless, again the elasticity is exactly one, in which case
all values of are revenue maximizing). From this standpoint, it is a
somewhat ill behaved demand model in pricing-optimization problems,
though in cases where revenue functions are combined with cost func-
tions this behavior is less problematic.

The multiproduct constant elasticity model is
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where the matrix of coefficients defines the cross (and own)
price elasticities among the products, since

Note that the inverse-demand function p(d) exists if the matrix B
is invertible, since (here

and log(·) is a strictly increasing function.

7.3.3.4 Logit Demand
The logit demand function is based on the MNL model of Sec-

tion 7.2.2.3. Recall that in the MNL the utility of each alternative
is assumed to be of the form

where is the mean utility of choice and is an i.i.d., random-noise
term with a Gumbel distribution with mean zero and scale parameter
one. For the logit-demand function, we also include a no-purchase alter-
native (indexed by zero) with utility

where is an independent Gumbel random variable with mean zero
and scale parameter 1. Since utility is ordinal, without loss of generality
we can assume The choice probabilities are then given by (7.6)
with the no-purchase alternative having a value

As mentioned, it is common to model as a linear function of several
known attributes including price. Assuming the representative compo-
nent of utility is linear in price and interpreting the choice probabili-
ties as fractions of a population of customers of size N lead to the class
of logit-demand functions.

For example, in the scalar case, we assume and this gives
rise to a demand function of the form

where N is the market size, is the probability that a
customer buys at price , and is a coefficient of the price sensitivity.
The function is defined for all nonnegative so There
is no closed-form expression for the inverse-demand function, but it is
easy to see that is strictly decreasing in so the inverse exists and
is well defined.
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In the multiple-product case, the demand function is given by

where again is a vector of coefficients and

is the MNL probability that a customer chooses product as a function
of the vector of prices p.

One potential problem with the MNL demand model is that it inherits
the IIA property (7.7). This causes problems if groups of products share
attributes that strongly affect the choice outcome. To illustrate what
can go wrong, consider the cross-price elasticity of alternative with
respect to the price of alternative This is given by

Notice that this cross-price elasticity is not dependent on and therefore
cross-elasticity is the same for all alternatives other than

The implications of this constant cross-price elasticity can be illus-
trated by an example of automobile market shares.10 Consider a pair of
subcompact cars and an expensive luxury car. If we lower the price of
one of the subcompact cars by 10%, then (7.18) says that the percentage
change in the demand for the other subcompact car will be the same as
the percentage change in the demand for the luxury car (if the other
subcompact car demand drops by 20%, then the luxury car demand will
also drop by 20%). Such behavior is not very realistic. This IIA behav-
ior stems fundamentally from the i.i.d. assumption on the random-noise
terms of the MNL model. (See Berry [53] for a discussion, and a
possible way around these restrictions on cross-price elasticities.)

7.3.4 Stochastic-Demand Functions
A deterministic demand function can be used to define a stochas-

tic model of demand in a variety of ways. In the stochastic case, we let

10If the population is homogeneous, the choice probabilities represent market share, and the
MNL can be used to estimate market shares.
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denote the random demand as a function of the price and a
random-noise term The three most common random-demand models
are discussed below.

7.3.4.1 Additive Uncertainty
In the additive model, the demand is a continuous random variable

of the form

where is a zero-mean random variable that does not depend on the
price. In this case, the mean demand is and the noise term shifts
the demand randomly about this mean.

Note that this additive disturbance has the property that the elasticity
of demand depends on This follows since

where is the deterministic elasticity. So if a realization
of is less than zero, the elasticity of demand in the stochastic model
is greater than the deterministic elasticity, and if the realization of is
greater than zero, it is smaller.

One potential problem with the additive uncertainty model is that
demand could be negative if is small and the variance of is large.
For this reason, the additive model should be used with caution in ap-
plications where the coefficients of variation for the demand uncertainty
is high.

7.3.4.2 Multiplicative Uncertainty
In the multiplicative model, the demand is again a continuous random

variable but of the form

where is a nonnegative random variable with mean one that does not
depend on the price In this case, the mean demand is again and
the noise term simply scales the mean demand by a random factor.
For the multiplicative model, the elasticity of demand for any given
realization of is the same as the deterministic elasticity, since

where again is the deterministic elasticity. Thus, the random-noise
term does not affect the elasticity of demand; it affects only the magni-
tude of demand.
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Note also that one can also combine the multiplicative and additive
uncertainty models, leading to a demand function of the form

where is a zero-mean random variable and is a nonnegative, unit-
mean random variable.

7.3.4.3 Poisson and Bernoulli Uncertainty
Poisson and Bernoulli models of uncertainty are used in the dynamic

models of demand discussed in Chapter 5. In the Bernoulli model,
is simply a probability of an arrival in a given period. So is the
probability that demand is one in a period, and is the probability
demand is zero. As a result, the mean demand in a period is again
and we can represent the demand as a random function

where is a uniform [0,1] random variable.
For example, consider a situation in which the buyer in the period has

a reservation price that is a random variable with distribution F(·). If
the firm offers a price of they will sell a unit if which occurs
with probability This corresponds to setting
above.

In the Poisson model, time is continuous, and is treated as a
stochastic intensity or rate. That is, the probability that we get a unit
of demand in an interval of time from to is and the
probability that we see no demand is (all other events
have probability ).

The Poisson and Bernoulli models are useful for several reasons. First,
they translate a deterministic demand function directly into a stochas-
tic model, without the need to estimate additional parameters (such
as variance). They also are discrete-demand models—as opposed to the
continuous demand of the additive and multiplicative models—and more
closely match the discreteness of demand in many RM applications. At
the same time, the Poisson and Bernoulli models assume a specific coeffi-
cient of variation, which may or may not match the observed variability.
The additive and multiplicative models, in contrast, allow for different
levels of variability in the model, as the complete distribution of the
noise term can be specified.
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7.3.4.4 Stochastic Regularity
As in the deterministic case, it is useful analytically to make some

regularity assumptions about the stochastic demand functions. In par-
ticular:

ASSUMPTION 7.6 (STOCHASTIC-DEMAND-FUNCTION REGULARITY)
The variance of demand is uniformly bounded,
for

This condition is not very restrictive and is required only to ensure
that stochastic optimization problems are well behaved.

7.3.5 Rationing Rules
A final demand-modeling issue concerns how capacity is allocated to

customers in cases where demand exceeds supply. For example, suppose
capacity is 100 units and the firm commits to a fixed price of $10 per
unit before knowing the demand realization. If the demand at this price
turns out to be 120, then what assumptions do we make about which
customers get the capacity and which do not? Do we assume that the
capacity is allocated to customers with the highest valuations (thereby
increasing the customer surplus), or should we assume that it is allocated
randomly—for example, on a first-come, first-serve basis? The rules used
for allocating capacity to customers when demand exceeds capacity are
called rationing rules in economics.

There are two classical rationing rules: (1) The efficient-rationing rule
(also called parallel rationing), in which it is assumed that units are allo-
cated to customers with the highest valuations, and (2) the proportional-
rationing rule (also called randomized rationing), in which it is assumed
that capacity is allocated randomly, so the allocation is independent of
the customers’ valuations. While the former is more efficient from a con-
sumer surplus standpoint, it is difficult to achieve in most posted-price
settings (though some types of auctions implement it very well).

In quantity-based RM applications the most natural assumption is
the proportional-rationing rule because when a given product is open,
it is normally purchased on a first-come first-served basis. Therefore,
provided there is no correlation between valuations and order of arrival,
the inventory is sold independent of valuations.

7.4 Notes and Sources
Kreps [313] provides a comprehensive and readable treatment of the

classical rational theory of consumer choice, including preference rela-
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tions, utility theory, and choice under uncertainty. See also the micro-
economics text of Mas-Collel et al. [365].

Random-utility models originated with the early work of the math-
ematical psychologist Thurston [511, 510] and were later formalized by
economists, most notably Manski [358] and McFadden [372, 373]. (See
also the edited volume by Manski and McFadden [357].) The limita-
tions of the MNL as a model for transportation demand are discussed
in detail by Oum [412]. The Gumbel distribution, which plays a central
role in the MNL, is one of the distributions of extremes examined in
Gumbel [229].

Kamakura and Russell [286], Chintagunta [117], and Allenby, Arora
and Ginter [8] are some marketing-science papers that use the finite-
mixture logit models. The finite-mixture and random-coefficient mod-
els are said to be heterogeneous in preferences; that is, customers use
the same choice model but have different preferences (for example,
use different coefficients) within that choice model. Another source of
heterogeneity—called structural heterogeneity—is when customers in dif-
ferent segments use fundamentally different decision processes in mak-
ing their purchase decisions. Such structural heterogeneity is studied in
Kannan and Wright [287] and Kamakura, Kim, and Lee [285]. Finally,
Dirichlet distributions have been used to model heterogeneity in brand-
choice behavior (Fader and Lattin [179]; Jain, Bass, and Chen [266]).

An excellent comprehensive text on both the theory and application
of discrete-choice models for demand estimation is Ben-Akiva and Ler-
man [48]. See also the book by Anderson et al. [16] for another good
text on discrete-choice theory and economic-modeling applications of the
theory.


